Capillary flow velocity profile analysis on paper-based microfluidic chips for screening oil types using machine learning

利用机器学习对纸基微流控芯片进行毛细管流速分布分析以筛选油类

阅读:5
作者:Soo Chung, Andrew Loh, Christian M Jennings, Katelyn Sosnowski, Sung Yong Ha, Un Hyuk Yim, Jeong-Yeol Yoon

Abstract

We conceived a novel approach to screen oil types on a wax-printed paper-based microfluidic platform. Various oil samples spontaneously flowed through a micrometer-scale channel via capillary action while their components were filtered and partitioned. The resulting capillary flow velocity profile fluctuated during the flow, which was used to screen oil types. Raspberry Pi camera captured the video clips, and a custom Python code analyzed them to obtain the capillary flow velocity profiles. 106 velocity profiles (each with 125 frames for 5 s) were recorded from various oil samples to build a training database. Principal component analysis (PCA), support vector machine (SVM), and linear discriminant analysis (LDA) were used to classify the oil types into heavy-to-medium crude, light crude, marine fuel, lubricant, and diesel oils. The second-order polynomial SVM model with PCA as a pre-processing step showed the highest accuracy: 90% in classifying crude oils and 81% in classifying non-crude oils. The assay took less than 30 s from the sample to answer, with 5 s of the capillary action-driven flow. This simple and effective assay will allow rapid preliminary screening of oil types, enable early tracking, and reduce the number of suspect samples to be analyzed by laboratory fingerprinting analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。