Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering

通过全局转录机械工程显著提高大肠杆菌的溶剂耐受性

阅读:6
作者:Fa Zhang, Xiaohong Qian, Haiming Si, Guochao Xu, Ruizhi Han, Ye Ni

Background

Escherichia coli has emerged as a promising platform microorganism to produce biofuels and fine chemicals of industrial interests. Certain obstacles however remain to be overcome, among which organic-solvent tolerance is a crucial one.

Conclusions

Our results show that several genes (gapA, sdhB, pepB and dppA) play critical roles in enhanced solvent tolerance of E. coli, mainly involving in maintaining higher intracellular energy level under solvent stress. Global transcription machinery engineering is therefore a feasible and efficient approach for engineering strain with enhanced OST-phenotype.

Results

We used global transcription machinery engineering (gTME) to improve the organic-solvent tolerance (OST) of E. coli JM109. A mutant library of σ(70) encoded by rpoD was screened under cyclohexane pressure. E. coli JM109 strain harboring σ(70) mutant C9 was identified with capability of tolerating 69 % cyclohexane. The rpoD mutant contains three amino-acid substitutes and a stop-codon mutation, resulting a truncated sequence containing regions σ(1.1) and σ(1.2). Total protein difference produced by E. coli JM109 strain harboring C9 was examined with 2D-PAGE, and 204 high-abundant proteins showed over twofold variation under different solvent stress. Conclusions: Our results show that several genes (gapA, sdhB, pepB and dppA) play critical roles in enhanced solvent tolerance of E. coli, mainly involving in maintaining higher intracellular energy level under solvent stress. Global transcription machinery engineering is therefore a feasible and efficient approach for engineering strain with enhanced OST-phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。