2,4-di-tert-butylphenol exposure impairs osteogenic differentiation

2,4-二叔丁基苯酚暴露会损害成骨分化

阅读:6
作者:Thanh-Bình Dương, Raj Dwivedi, Lisa J Bain

Abstract

2,4-di-tert-butylphenol (2,4-DTBP) is a synthetic antioxidant used in polyethylene crosspolymer (PEX) water distribution pipes and food-related plastics. 2,4-DTBP can leach from plastic materials and has been found in breast milk, cord blood, and placental tissue, giving rise to the concern that this compound may interfere with fetal development. The objective of this study is to assess the impacts of 2,4-DTBP on cellular differentiation. Human induced pluripotent stem (HiPS) cells were differentiated into osteoblasts or myoblasts over 40 days, and analyzed for markers of somite, dermomyotome, sclerotome, myoblast, and osteoblast development. When cultured as stem cells, 2,4-DTBP did not alter cell viability and expression of markers (NANOG, OCT4). However, upon differentiation into somite-like cells, 2,4-DTBP had reduced levels of MEOX1 and TBX6 transcripts, while NANOG and OCT4 were in turn upregulated in a dose-dependent manner. At the sclerotome-like stage, PAX9 mRNA decreased by 2-fold in the 0.5 μM and 1.0 μM 2,4-DTBP exposure groups. After 40 days of differentiation into an osteoblast-like lineage, exposure to 2,4-DTBP significantly reduced expression of the osteogenesis transcripts RUNX2 and OSX in a dose-dependent manner. Further, Alizarin Red staining of calcium deposits was decreased in the 0.5 μM and 1.0 μM treatment groups. In contrast, myogenesis was not affected by 2,4-DTBP exposure. Interestingly, KEAP1 expression was significantly increased in the sclerotomal-like cells, but decreased in the dermomytomal-like cells, which may suggest a mechanism of action. Overall, this study shows that 2,4-DTBP can delay key processes during sclerotome and osteoblast development, leading to a potential for bone developmental issues in exposed individuals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。