Improvement in Oil Production by Increasing Malonyl-CoA and Glycerol-3-Phosphate Pools in Scenedesmus quadricauda

通过增加四尾栅藻中的丙二酰辅酶 A 和甘油-3-磷酸库来提高油脂产量

阅读:5
作者:Ahmed E Gomma #, Sung-Kwon Lee #, Sang Mi Sun, Seung Hwan Yang, Gyuhwa Chung

Abstract

In recent years, microalgae have attracted considerable interest as a biofuel resource owing to their rapid growth, tolerance to harsh conditions, and ability to accumulate a large amount of triacylglycerols (TAGs). However, the economic effectiveness of algal biofuel is still low. In this study, we attempted to increase oil production of the microalga Scenedesmus quadricauda by elevating intracellular malonyl-CoA and glycerol-3-phosphate (G3P) pools. To increase intracellular oil content, yeast-derived genes encoding acetyl-CoA carboxylase (ACC1), glycerol kinase (GPD1), and glycerol-3-phosphate dehydrogenase (GUT1) were overexpressed under the control of CaMV 35S and NOS promoters with SV40 large T antigen components. Fatty acid profiling, G3P content, and the number of cells with high oil content were analyzed by gas chromatography-mass spectrometry, G3P assay kit, and flow cytometry, respectively. Overexpression of ACC1 increased the total fatty acid content by 1.6-fold. Overexpression of GPD1 and GUT1 increased intracellular G3P content by 1.6- and 1.9-fold, respectively. Multi-gene expression of ACC1, GPD1, and GUT1 increased the number of cells with high oil content by 1.45-fold compared with that observed with the wild-type. This study is the first to report increased oil production by overexpression of the key genes (ACC1, GPD1, and GUT1) for TAG biosynthesis in microalgae.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。