Developmental programming of neonatal pancreatic β-cells by a maternal low-protein diet in rats involves a switch from proliferation to differentiation

大鼠母体低蛋白饮食对新生胰腺 β 细胞的发育编程涉及从增殖到分化的转变

阅读:5
作者:Adriana Rodríguez-Trejo, María Guadalupe Ortiz-López, Elena Zambrano, María de Los Ángeles Granados-Silvestre, Carmen Méndez, Bertrand Blondeau, Bernadette Bréant, Peter W Nathanielsz, Marta Menjivar

Abstract

Maternal low-protein diets (LP) impair pancreatic β-cell development, resulting in later-life failure and susceptibility to type 2 diabetes (T2D). We hypothesized that intrauterine and/or postnatal developmental programming seen in this situation involve altered β-cell structure and relative time course of expression of genes critical to β-cell differentiation and growth. Pregnant Wistar rats were fed either control (C) 20% or restricted (R) 6% protein diets during pregnancy (1st letter) and/or lactation (2nd letter) in four groups: CC, RR, RC, and CR. At postnatal days 7 and 21, we measured male offspring β-cell fraction, mass, proliferation, aggregate number, and size as well as mRNA level for 13 key genes regulating β-cell development and function in isolated islets. Compared with CC, pre- and postnatal LP (RR) decreased β-cell fraction, mass, proliferation, aggregate size, and number and increased Hnf1a, Hnf4a, Pdx1, Isl1, Rfx6, and Slc2a2 mRNA levels. LP only in pregnancy (RC) also decreased β-cell fraction, mass, proliferation, aggregate size, and number and increased Hnf1a, Hnf4a, Pdx1, Rfx6, and Ins mRNA levels. Postnatal LP offspring (CR) showed decreased β-cell mass but increased β-cell fraction, aggregate number, and Hnf1a, Hnf4a, Rfx6, and Slc2a2 mRNA levels. We conclude that LP in pregnancy sets the trajectory of postnatal β-cell growth and differentiation, whereas LP in lactation has smaller effects. We propose that LP promotes differentiation through upregulation of transcription factors that stimulate differentiation at the expense of proliferation. This results in a decreased β-cell reserve, which can contribute to later-life predisposition to T2D.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。