Neuroprotective effect of emodin against Alzheimer's disease via Nrf2 signaling in U251 cells and APP/PS1 mice

大黄素通过 Nrf2 信号传导对 U251 细胞和 APP/PS1 小鼠的阿尔茨海默病产生神经保护作用

阅读:7
作者:Zhiping Li #, Hui Bi #, Hongbo Jiang, Jingjing Song, Qingfan Meng, Yizhi Zhang, Xiaofang Fei

Abstract

Emodin is a naturally‑occurring medicinal herbal ingredient that possesses numerous pharmacological properties, including anti‑inflammatory and antioxidant effects. In the present study, potential neuroprotective effects associated with the antioxidant activity of emodin were assessed in U251 cells that were subjected to β‑amyloid peptide (Aβ)‑induced apoptosis and in amyloid precursor protein (APP)/presenilin‑1 (PS1) double‑transgenic mice. U251 is a type of human astroglioma cell line (cat. no. BNCC337874; BeNa Culture Collection). In apoptotic U251 cells, 3‑h emodin pre‑treatment prior to 24‑h Aβ co‑exposure improved cell viability, suppressed lactate dehydrogenase leakage and caspase‑3, ‑8 and ‑9 activation to inhibit apoptosis. Compared with those after Aβ exposure alone, emodin ameliorated the dissipation of the mitochondrial membrane potential, inhibited the over‑accumulation of reactive oxygen species, enhanced the expression levels of nuclear factor‑erythroid‑2‑related factor 2 (Nrf2), haemeoxygenase‑1, superoxide dismutase 1, Bcl‑2 and catalase in addition to decreasing the expression levels of Bax. In APP/PS1 mice, an 8‑week course of emodin administration improved spatial memory and learning ability and decreased anxiety. Emodin was also found to regulate key components in the Nrf2 pathway and decreased the deposition of Aβ, phosphorylated‑τ and 4‑hydroxy‑2‑nonenal in APP/PS1 mice. Taken together, the present data suggest that emodin may serve as a promising candidate for the treatment of Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。