A role for aberrant protein palmitoylation in FFA-induced ER stress and β-cell death

异常蛋白质棕榈酰化在 FFA 诱导的内质网应激和 β 细胞死亡中的作用

阅读:6
作者:Aaron C Baldwin, Christopher D Green, L Karl Olson, Michael A Moxley, John A Corbett

Abstract

Exposure of insulin-producing cells to elevated levels of the free fatty acid (FFA) palmitate results in the loss of β-cell function and induction of apoptosis. The induction of endoplasmic reticulum (ER) stress is one mechanism proposed to be responsible for the loss of β-cell viability in response to palmitate treatment; however, the pathways responsible for the induction of ER stress by palmitate have yet to be determined. Protein palmitoylation is a major posttranslational modification that regulates protein localization, stability, and activity. Defects in, or dysregulation of, protein palmitoylation could be one mechanism by which palmitate may induce ER stress in β-cells. The purpose of this study was to evaluate the hypothesis that palmitate-induced ER stress and β-cell toxicity are mediated by excess or aberrant protein palmitoylation. In a concentration-dependent fashion, palmitate treatment of RINm5F cells results in a loss of viability. Similar to palmitate, stearate also induces a concentration-related loss of RINm5F cell viability, while the monounsaturated fatty acids, such as palmoleate and oleate, are not toxic to RINm5F cells. 2-Bromopalmitate (2BrP), a classical inhibitor of protein palmitoylation that has been extensively used as an inhibitor of G protein-coupled receptor signaling, attenuates palmitate-induced RINm5F cell death in a concentration-dependent manner. The protective effects of 2BrP are associated with the inhibition of [(3)H]palmitate incorporation into RINm5F cell protein. Furthermore, 2BrP does not inhibit, but appears to enhance, the oxidation of palmitate. The induction of ER stress in response to palmitate treatment and the activation of caspase activity are attenuated by 2BrP. Consistent with protective effects on insulinoma cells, 2BrP also attenuates the inhibitory actions of prolonged palmitate treatment on insulin secretion by isolated rat islets. These studies support a role for aberrant protein palmitoylation as a mechanism by which palmitate enhances ER stress activation and causes the loss of insulinoma cell viability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。