let7f‑5p attenuates inflammatory injury in i n vitro pneumonia models by targeting MAPK6

let7f-5p 通过靶向 MAPK6 减轻体外肺炎模型中的炎症损伤

阅读:9
作者:Lin Xu, Qingying Song, Zhanghong Ouyang, Xiangyan Zhang, Cheng Zhang

Abstract

Pneumonia accounts for ~1.3 million mortalities in children per year worldwide. MicroRNAs are implicated in several diseases, including cancer and pneumonia; however, the role of let7f‑5p in pneumonia is not completely understood. In the present study, lipopolysaccharide (LPS) was used to establish an in vitro pneumonia model in A549 and WI‑38 cells. The reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting results demonstrated that let7f‑5p expression levels were significantly decreased, whereas MAPK6 expression levels were significantly increased in the peripheral venous blood of patients with pneumonia and in LPS‑induced A549 and WI‑38 cells compared with healthy volunteers and control cells, respectively. Furthermore, the dual‑luciferase reporter assay demonstrated that let7f‑5p targeted the 3'‑untranslated region of MAPK6. The ELISA and RT‑qPCR results demonstrated that let7f‑5p mimic ameliorated LPS‑induced inflammatory injury in A549 and WI‑38 cells, as demonstrated by decreased expression levels of proinflammatory cytokines, including TNF‑α and IL‑6. In addition, the Cell Counting Kit‑8 assay results indicated that let7f‑5p mimic ameliorated LPS‑induced reductions in cell viability, and the western blotting results demonstrated that let7f‑5p mimic reversed LPS‑induced activation of the STAT3 signaling pathway. Notably, the aforementioned let7f‑5p‑mediated effects were reversed by MAPK6 overexpression. Collectively, the results of the present study suggested that let7f‑5p inhibited inflammation by targeting MAPK6 in the in vitro pneumonia model, thus let7f‑5p may serve as a potential novel therapeutic target for pneumonia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。