Unraveling the molecular mechanisms of lymph node metastasis in ovarian cancer: focus on MEOX1

揭示卵巢癌淋巴结转移的分子机制:重点关注 MEOX1

阅读:5
作者:Jiajia Li #, Yihua Sun #, Xiuling Zhi, Yating Sun, Zulimire Abudousalamu, Qianhan Lin, Bin Li, Liangqing Yao, Mo Chen

Background

Lymph node metastasis (LNM) is a major factor contributing to the high mortality rate of ovarian cancer, making the treatment of this disease challenging. However, the molecular mechanism underlying LNM in ovarian cancer is still not well understood, posing a significant obstacle to overcome.

Conclusions

The results of our study indicate that MEOX1 plays a role in the lymph node metastasis of ovarian cancer by regulating multiple biological activities, including the proliferation and EMT of ovarian cancer, lymphangiogenesis, and ECM remodeling. Our findings suggest that MEOX1 could serve as a potential biomarker for the diagnosis and treatment of ovarian cancer with LNM.

Results

Through data mining from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we have identified MEOX1 as a specific gene associated with LNM in ovarian cancer. The expression of MEOX1 was found to be relatively high in serous ovarian adenocarcinoma, and its higher expression were associated with increased tumor grade and poorer clinical prognosis for ovarian cancer patients. Bioinformatics analysis revealed that MEOX1 exhibited the highest mRNA levels among all cancer types in ovarian cancer tissues and cell lines. Furthermore, gene set enrichment analysis (GSEA) and pathway analysis demonstrated that MEOX1 was involved in various LNM-related biological activities, such as lymphangiogenesis, lymphatic vessel formation during metastasis, epithelial-mesenchymal transition (EMT), G2/M checkpoint, degradation of extracellular matrix, and collagen formation. Additionally, the expression of MEOX1 was positively correlated with the expression of numerous prolymphangiogenic factors in ovarian cancer. To validate our findings, we conducted experiments using clinical tissue specimens and cell lines, which confirmed that MEOX1 was highly expressed in high-grade serous ovarian cancer (HGSOC) tissues and various ovarian cancer cell lines (A2780, SKOV3, HO8910, and OVCAR5) compared to normal ovarian tissues and normal ovarian epithelial cell line IOSE-80, respectively. Notably, we observed a higher protein level of MEOX1 in tumor tissues of LNM-positive HGSOC compared to LNM-negative HGSOC. Moreover, our fundamental experiments demonstrated that suppression of MEOX1 led to inhibitory effects on ovarian cancer cell proliferation and EMT, while overexpression of MEOX1 enhanced the proliferation and EMT capacities of ovarian cancer cells. Conclusions: The results of our study indicate that MEOX1 plays a role in the lymph node metastasis of ovarian cancer by regulating multiple biological activities, including the proliferation and EMT of ovarian cancer, lymphangiogenesis, and ECM remodeling. Our findings suggest that MEOX1 could serve as a potential biomarker for the diagnosis and treatment of ovarian cancer with LNM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。