Tnfaip2/exoc3-driven lipid metabolism is essential for stem cell differentiation and organ homeostasis

Tnfaip2/exoc3 驱动的脂质代谢对于干细胞分化和器官稳态至关重要

阅读:6
作者:Sarmistha Deb, Daniel A Felix, Philipp Koch, Maharshi Krishna Deb, Karol Szafranski, Katrin Buder, Mara Sannai, Marco Groth, Joanna Kirkpatrick, Stefan Pietsch, André Gollowitzer, Alexander Groß, Philip Riemenschneider, Andreas Koeberle, Cristina González-Estévez, Karl Lenhard Rudolph

Abstract

Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para-ortholog, Smed-exoc3, abrogates in vivo tissue homeostasis and regeneration-processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2-deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin (Vim)-a known inducer of LD formation. Smed-exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl-L-carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2-deficient ESCs and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。