Biomass-Derived Porous Carbon from Agar as an Anode Material for Lithium-Ion Batteries

以琼脂为原料的生物质多孔碳作为锂离子电池的阳极材料

阅读:5
作者:Nurbolat Issatayev, Gulnur Kalimuldina, Arailym Nurpeissova, Zhumabay Bakenov

Abstract

New porous activated carbons with a high surface area as an anode material for lithium-ion batteries (LIBs) were synthesized by a one-step, sustainable, and environmentally friendly method. Four chemical activators-H2SO4, H3PO4, KOH, and ZnCl2-have been investigated as facilitators of the formation of the porous structure of activated carbon (AC) from an agar precursor. The study of the materials by Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) methods revealed its highly porous meso- and macro-structure. Among the used chemical activators, the AC prepared with the addition of KOH demonstrated the best electrochemical performance upon its reaction with lithium metal. The initial discharge capacity reached 931 mAh g-1 and a reversible capacity of 320 mAh g-1 was maintained over 100 cycles at 0.1 C. High rate cycling tests up to 10 C demonstrated stable cycling performance of the AC from agar.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。