Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial-mesenchymal transition

妊娠早期细胞滋养细胞向绒毛外滋养细胞的分化涉及上皮-间质转化

阅读:10
作者:Sonia DaSilva-Arnold, Joanna L James, Abdulla Al-Khan, Stacy Zamudio, Nicholas P Illsley

Abstract

The transformation of cytotrophoblast (CTB) to extravillous trophoblast (EVT) is an essential process for placental implantation. EVT generated at the tips of the anchoring villi migrate away from the placenta and invade the endometrium and maternal spiral arteries, where they modulate maternal immune responses and remodel the arteries into high-volume conduits to facilitate uteroplacental blood flow. The process of EVT differentiation has several factors in common with the epithelial-to-mesenchymal transition (EMT) observed in embryonic development, wound healing and cancer metastasis. We hypothesized that the generation of invasive EVT from CTB was a form of EMT. We isolated paired CTB and EVT from first trimester placentae, and compared their gene expression using a PCR array comprising probes for genes involved in EMT. Out of 84 genes, 24 were down-regulated in EVT compared to CTB, including epithelial markers such as E-cadherin (-11-fold) and occludin (-75-fold). Another 30 genes were up-regulated in EVT compared to CTB including mesenchymal markers such as vimentin (235-fold) and fibronectin (107-fold) as well as the matrix metalloproteinases, MMP2 and MMP9 (357-fold, 129-fold). These alterations also included major increases in the ZEB2 (zinc finger E-box binding homeobox 2, 198-fold) and TCF4 (transcription factor 4, 18-fold) transcription factors, suggesting possible stimulatory mechanisms. There was substantial up-regulation of the genes encoding TGFβ1 and TGFβ2 (48-fold, 115-fold), which may contribute to the maintenance of the mesenchymal-like phenotype. We conclude that transformation of CTB to EVT is consistent with an EMT, although the differences with other types of EMT suggest this may be a unique form.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。