Pulmonary hypertension associated with advanced systolic heart failure: dysregulated arginine metabolism and importance of compensatory dimethylarginine dimethylaminohydrolase-1

与晚期收缩性心力衰竭相关的肺动脉高压:精氨酸代谢失调和补偿性二甲基精氨酸二甲氨基水解酶-1 的重要性

阅读:5
作者:Zhili Shao, Zeneng Wang, Kevin Shrestha, Akanksha Thakur, Allen G Borowski, Wendy Sweet, James D Thomas, Christine S Moravec, Stanley L Hazen, W H Wilson Tang

Background

Accumulating methylated arginine metabolites and impaired arginine bioavailability have been associated with heart failure, but the underlying pathophysiology remains unclear.

Conclusions

Dysregulated arginine metabolism was observed in advanced decompensated heart failure, particularly with pulmonary hypertension and elevated intracardiac filling pressures. Compared with hearts of control subjects, we observed higher amounts of ADMA-degradation enzyme dimethylarginine dimethylaminohydrolase-1 (but similar amounts of ADMA-producing enzyme, protein methyltransferase-1) in the human failing myocardium.

Methods

This study prospectively determined plasma levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, and global arginine bioavailability ratio [GABR = arginine/(ornithine + citrulline)] by tandem mass spectrometry in subjects with advanced decompensated heart failure in the intensive care unit (n = 68) and with stable chronic heart failure (n = 57).

Results

Compared with chronic heart failure subjects, plasma ADMA was significantly higher (median [interquartile range]: 1.29 [1.04 to 1.77] μmol/l vs. 0.87 [0.72 to 1.05] μmol/l, p < 0.0001), and global arginine bioavailability ratio significantly lower (median [interquartile range]: 0.90 [0.69 to 1.22] vs. 1.13 [0.92 to 1.37], p = 0.002) in advanced decompensated heart failure subjects. Elevated ADMA and diminished global arginine bioavailability ratio were associated with higher systolic pulmonary artery pressure (sPAP) and higher central venous pressure, but not with other clinical or hemodynamic indices. We further observed myocardial levels of dimethylarginine dimethylaminohydrolase-1 were increased in chronic heart failure without elevated sPAP (<50 mm Hg), but diminished with elevated sPAP (≥50 mm Hg, difference with sPAP <50 mm Hg, p = 0.02). Conclusions: Dysregulated arginine metabolism was observed in advanced decompensated heart failure, particularly with pulmonary hypertension and elevated intracardiac filling pressures. Compared with hearts of control subjects, we observed higher amounts of ADMA-degradation enzyme dimethylarginine dimethylaminohydrolase-1 (but similar amounts of ADMA-producing enzyme, protein methyltransferase-1) in the human failing myocardium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。