CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus

CRISPR/Cas9:一种廉价、有效的功能丧失工具,用于在非洲爪蟾中筛选人类疾病基因

阅读:4
作者:Dipankan Bhattacharya, Chris A Marfo, Davis Li, Maura Lane, Mustafa K Khokha

Abstract

Congenital malformations are the major cause of infant mortality in the US and Europe. Due to rapid advances in human genomics, we can now efficiently identify sequence variants that may cause disease in these patients. However, establishing disease causality remains a challenge. Additionally, in the case of congenital heart disease, many of the identified candidate genes are either novel to embryonic development or have no known function. Therefore, there is a pressing need to develop inexpensive and efficient technologies to screen these candidate genes for disease phenocopy in model systems and to perform functional studies to uncover their role in development. For this purpose, we sought to test F0 CRISPR based gene editing as a loss of function strategy for disease phenocopy in the frog model organism, Xenopus tropicalis. We demonstrate that the CRISPR/Cas9 system can efficiently modify both alleles in the F0 generation within a few hours post fertilization, recapitulating even early disease phenotypes that are highly similar to knockdowns from morpholino oligos (MOs) in nearly all cases tested. We find that injecting Cas9 protein is dramatically more efficacious and less toxic than cas9 mRNA. We conclude that CRISPR based F0 gene modification in X. tropicalis is efficient and cost effective and readily recapitulates disease and MO phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。