Increased Proteoglycanases in Pulmonary Valves after Birth Correlate with Extracellular Matrix Maturation and Valve Sculpting

出生后肺动脉瓣膜中蛋白聚糖酶的增加与细胞外基质的成熟和瓣膜塑造相关

阅读:5
作者:Loren E Dupuis, Sarah E Evins, Morgan C Abell, Morgan E Blakley, Samuel L Horkey, Jeremy L Barth, Christine B Kern

Abstract

Increased mechanical forces on developing cardiac valves drive formation of the highly organized extracellular matrix (ECM) providing tissue integrity and promoting cell behavior and signaling. However, the ability to investigate the response of cardiac valve cells to increased mechanical forces is challenging and remains poorly understood. The developmental window from birth (P0) to postnatal day 7 (P7) when biomechanical forces on the pulmonary valve (PV) are altered due to the initiation of blood flow to the lungs was evaluated in this study. Grossly enlarged PV, in mice deficient in the proteoglycan protease ADAMTS5, exhibited a transient phenotypic rescue from postnatal day 0 (P0) to P7; the Adamts5-/- aortic valves (AV) did not exhibit a phenotypic correction. We hypothesized that blood flow, initiated to the lungs at birth, alters mechanical load on the PV and promotes ECM maturation. In the Adamts5-/- PV, there was an increase in localization of the proteoglycan proteases ADAMTS1, MMP2, and MMP9 that correlated with reduced Versican (VCAN). At birth, Decorin (DCN), a Collagen I binding, small leucine-rich proteoglycan, exhibited complementary stratified localization to VCAN in the wild type at P0 but colocalized with VCAN in Adamts5-/- PV; concomitant with the phenotypic rescue at P7, the PVs in Adamts5-/- mice exhibited stratification of VCAN and DCN similar to wild type. This study indicates that increased mechanical forces on the PV at birth may activate ECM proteases to organize specialized ECM layers during cardiac valve maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。