Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia

脂肪分化相关蛋白不参与缺氧诱导因子-1诱导的缺氧条件下脂质积累

阅读:5
作者:Guomin Shen, Ning Ning, Xingsheng Zhao, Xi Liu, Guangyu Wang, Tianzhen Wang, Ran Zhao, Chao Yang, Dongmei Wang, Pingyuan Gong, Yan Shen, Yongjian Sun, Xiao Zhao, Yinji Jin, Weiwei Yang, Yan He, Lei Zhang, Xiaoming Jin, Xiaobo Li

Abstract

Increasing evidence has showed that hypoxia inducible factor-1 (HIF1) has an important role in hypoxia-induced lipid accumulation, a common feature of solid tumors; however, its role remains to be fully elucidated. Adipose differentiation‑related protein (ADRP), a structural protein of lipid droplets, is found to be upregulated under hypoxic conditions. In the present study, an MCF7 breast cancer cell line was used to study the role of ADRP in hypoxia‑induced lipid accumulation. It was demonstrated that hypoxia induced the gene expression of ADRP in a HIF1‑dependent manner. Increases in the mRNA and protein levels of ADRP was accompanied by increased HIF1A activity. In addition, a significant decrease in the mRNA and protein levels of ADRP were detected in presence of siRNA targeting HIF1A. Using a dual‑luciferase reporting experiment and chromatin immunoprecipitation assay, the present study demonstrated that ADRP is a direct target gene of HIF1, and identified a functional hypoxia response element localized 33 bp upstream of the transcriptional start site of the ADRP gene. Furthermore, the present study demonstrated the role of ADRP in low density liporotein (LDL) and very‑LDL uptake‑induced lipid accumulation under hypoxia. The knockdown of ADRP did not reduce HIF1‑induced lipid accumulation under hypoxia. Together, these results showed that ADRP may be not involved in HIF1-induced lipid accumulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。