Intermittent hypoxia and systemic leptin administration induces pSTAT3 and Fos/Fra-1 in the carotid body

间歇性缺氧和全身性瘦素给药可诱导颈动脉体中的 pSTAT3 和 Fos/Fra-1

阅读:4
作者:Scott A Messenger, Jason M Moreau, John Ciriello

Abstract

Glomus cells within the carotid body are known to respond to hypoxic stimuli. Recently, these cells have been shown to express the long form of the leptin receptor (Ob-Rb). However, whether these glomus cells expressing the Ob-Rb are activated by hypoxic stimuli is not known. Therefore, in this study we investigated whether intermittent hypoxia (IH) or changes in circulating levels of leptin induced phosphorylated signal transducer and activator of transcription 3 (pSTAT3), the immediate early gene c-fos protein, or fos-related antigen-1 protein (Fra-1) within carotid body glomus cells that expressed the Ob-Rb, and within neurons of the petrosal (PG) and nodose (NG) ganglia. Rats were subjected to IH (120 s normoxia, 80s hypoxia for 8h) or normoxia (8h), or intravenous injections of leptin (50 or 200 ng/0.1 mL) or the vehicle saline. Plasma leptin levels were measured in animals exposed to IH and normoxia. Exposure to 8h of IH increased plasma leptin levels greater than 2-fold compared to normoxic controls. Animals were then perfused with Zamboni's fixative, and the region of the carotid bifurcation containing the carotid body and PG/NG complex was removed, paraffin embedded and sectioned at 6 μm for immunohistochemical processing. Carotid body glomus cells were identified by their expression of tyrosine hydroxylase immunoreactivity. These glomus cells also expressed the OB-Rb and were found to express pSTAT3-, fos-, and Fra-1-like immunoreactivity in response to both IH and systemic leptin injections. IH and leptin injections also increased fos and Fra-1 like expression in the PG, NG and jugular ganglion. Taken together, these data suggest IH alters circulating leptin which in turn activates directly carotid body glomus cells to exert a modulatory effect on the peripheral chemoreceptor reflex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。