Gasdermin D pore-forming activity is redox-sensitive

Gasdermin D 成孔活性对氧化还原敏感

阅读:6
作者:Pascal Devant, Elvira Boršić, Elsy M Ngwa, Haopeng Xiao, Edward T Chouchani, Jay R Thiagarajah, Iva Hafner-Bratkovič, Charles L Evavold, Jonathan C Kagan

Abstract

Reactive oxygen species (ROS) regulate the activities of inflammasomes, which are innate immune signaling organelles that induce pyroptosis. The mechanisms by which ROS control inflammasome activities are unclear and may be multifaceted. Herein, we report that the protein gasdermin D (GSDMD), which forms membrane pores upon cleavage by inflammasome-associated caspases, is a direct target of ROS. Exogenous and endogenous sources of ROS, and ROS-inducing stimuli that prime cells for pyroptosis induction, promote oligomerization of cleaved GSDMD, leading to membrane rupture and cell death. We find that ROS enhance GSDMD activities through oxidative modification of cysteine 192 (C192). Within macrophages, GSDMD mutants lacking C192 show impaired ability to form membrane pores and induce pyroptosis. Reciprocal mutagenesis studies reveal that C192 is the only cysteine within GSDMD that mediates ROS responsiveness. Cellular redox state is therefore a key determinant of GSDMD activities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。