Inputs from Sequentially Developed Parallel Fibers Are Required for Cerebellar Organization

小脑组织需要来自顺序发育的平行纤维的输入

阅读:7
作者:Heeyoun Park, Taegon Kim, Jinhyun Kim, Yukio Yamamoto, Keiko Tanaka-Yamamoto

Abstract

Neuronal activity is believed to be important for brain development; however, it remains unclear as to how spatiotemporal distributions of synaptic excitation contribute to neural network formation. Bifurcated axons of cerebellar granule cells, parallel fibers (PFs), are made in an orderly inside-out manner during postnatal development. In this study, we induced a blockade of neurotransmitter release from specific bundles of developing PFs and tested the effects of biased PF inputs on cerebellar development. The blockade of different layers of PFs at different developmental times results in varying degrees of abnormal cerebellar development. Furthermore, cerebellar network abnormalities are not restored when PF inputs are restored in adulthood and, hence, result in motor dysfunction. We thus conclude that spatiotemporally unbiased synaptic transmission from sequentially developed PFs is crucial for cerebellar network formation and motor function, supporting the idea that unbiased excitatory synaptic transmission is crucial for network formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。