Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate

牛诱导多能干细胞对单(2-乙基己基)邻苯二甲酸酯的反应比睾丸细胞更能抵抗细胞凋亡

阅读:6
作者:Ying-Chu Lin, Kung-Kai Kuo, Kenly Wuputra, Shih-Han Lin, Chia-Chen Ku, Ya-Han Yang, Shin-Wei Wang, Sheng-Wen Wang, Deng-Chyang Wu, Chun-Chien Wu, Chee-Yin Chai, Cheng-Lung Lin, Chang-Shen Lin, Masayuki Kajitani, Hiroyuki Miyoshi, Yukio Nakamura, Shinichi Hashimoto, Kouji Matsushima, Chunyuan Jin, Sh

Abstract

Although the androgen receptor (AR) has been implicated in the promotion of apoptosis in testicular cells (TSCs), the molecular pathway underlying AR-mediated apoptosis and its sensitivity to environmental hormones in TSCs and induced pluripotent stem cells (iPSCs) remain unclear. We generated the iPSCs from bovine TSCs via the electroporation of OCT4. The established iPSCs were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4 to maintain and stabilize the expression of stemness genes and their pluripotency. Apoptosis signaling was assessed after exposure to mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-ethylhexyl) phthalate. Here, we report that iPSCs were more resistant to MEHP-induced apoptosis than were original TSCs. MEHP also repressed the expression of AR and inactivated WNT signaling, and then led to the commitment of cells to apoptosis via the cyclin dependent kinase inhibitor p21CIP1. The loss of the frizzed receptor 7 and the gain of p21CIP were responsible for the stimulatory effect of MEHP on AR-mediated apoptosis. Our results suggest that testicular iPSCs can be used to study the signaling pathways involved in the response to environmental disruptors, and to assess the toxicity of environmental endocrine disruptors in terms of the maintenance of stemness and pluripotency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。