Deciphering the Mechanism of Siwu Decoction Inhibiting Liver Metastasis by Integrating Network Pharmacology and In Vivo Experimental Validation

结合网络药理学与体内实验验证揭示四物汤抑制肝转移的机制

阅读:9
作者:Xuelei Chu, Feiyu Xie, Chengzhi Hou, Xin Zhang, Sijia Wang, Hongting Xie, Chen An, Ying Li, Leyi Zhao, Peng Xue, Shijie Zhu

Background

Siwu Decoction (SWD) is a well-known classical TCM formula that has been shown to be effective as a basis for preventing and reducing liver metastases (LM). However, the active ingredients and potential molecular mechanisms remain unclear.

Conclusion

This study clarified the active ingredients of SWD, the therapeutic targets of LM and potential molecular mechanisms. SWD may protect against LM through suppressing HIF-1/VEGF pathway.

Methods

The active ingredients in SWD were extracted by UHPLC-MS/MS in a latest study. Protox II was retrieved to obtain toxicological parameters to detect safety. Swiss Target Prediction database was exploited to harvest SWD targets. Five databases, Gene Cards, DisGeNET, Drugbank, OMIM, and TTD, were employed to filter pathogenic targets of LM. STRING database was utilized to construct the protein-protein interaction network for therapeutic targets, followed by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. GEPIA database and the Human Protein Atlas were taken to observe the expression of core genes and proteins. ImmuCellAI algorithm was applied to analyze the immune microenvironment and survival relevant to core genes. Molecular docking was performed to verify the affinity of SWD effective ingredients to core targets. In vivo experiments were carried out to validate the anti-LM efficacy of SWD and verify the pivotal mechanisms of action.

Objective

This study aimed to systematically analyze the active ingredients and potential molecular mechanisms of SWD on LM and validate mechanisms involved. Materials and

Results

Eighteen main bioactive phytochemicals identified were all non-hepatotoxic. PPI network acquired 118 therapeutic targets, of which VEGFA, CASP3, STAT3, etc. were identified as core targets. KEGG analysis revealed that HIF-1 pathway and others were critical. After tandem targets and pathways, HIF-1/VEGF was regarded as the greatest potential pathway. VEGFA and HIF-1 were expressed differently in various stages of cancer and normal tissues. There was a negative regulation of immunoreactive cells by VEGFA, which was influential for prognosis. Molecular docking confirmed the tight binding to VEGFA. This study revealed the exact effect of SWD against LM, and identified significant inhibition the expression of HIF-1α, VEGF, and CD31 in the liver microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。