A Novel Trichothecene Toxin Phenotype Associated with Horizontal Gene Transfer and a Change in Gene Function in Fusarium

一种与水平基因转移和镰刀菌基因功能改变相关的新型单端孢霉毒素表型

阅读:5
作者:Robert H Proctor, Guixia Hao, Hye-Seon Kim, Briana K Whitaker, Imane Laraba, Martha M Vaughan, Susan P McCormick

Abstract

Fusarium trichothecenes are among the mycotoxins of most concern to food and feed safety. Production of these mycotoxins and presence of the trichothecene biosynthetic gene (TRI) cluster have been confirmed in only two multispecies lineages of Fusarium: the Fusarium incarnatum-equiseti (Incarnatum) and F. sambucinum (Sambucinum) species complexes. Here, we identified and characterized a TRI cluster in a species that has not been formally described and is represented by Fusarium sp. NRRL 66739. This fungus is reported to be a member of a third Fusarium lineage: the F. buharicum species complex. Cultures of NRRL 66739 accumulated only two trichothecenes, 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol. Although these are not novel trichothecenes, the production profile of NRRL 66739 is novel, because in previous reports 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol were components of mixtures of 6-8 trichothecenes produced by several Fusarium species in Sambucinum. Heterologous expression analysis indicated that the TRI13 gene in NRRL 66739 confers trichothecene 7-hydroxylation. This contrasts the trichothecene 4-hydroxylation function of TRI13 in other Fusarium species. Phylogenetic analyses suggest that NRRL 66739 acquired the TRI cluster via horizontal gene transfer from a close relative of Incarnatum and Sambucinum. These findings provide insights into evolutionary processes that have shaped the distribution of trichothecene production among Fusarium species and the structural diversity of the toxins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。