Circ_0007385 regulates cell proliferation, apoptosis and stemness via targeting miR-493-3p/RAB22A axis in non-small cell lung cancer

Circ_0007385 通过靶向 miR-493-3p/RAB22A 轴调节非小细胞肺癌中的细胞增殖、凋亡和干细胞特性

阅读:6
作者:Dongxiao Ding, Feng Yang, Zhongjie Chen, Junjie Ying

Background

Non-small cell lung cancer (NSCLC) is a common cancer in the United States. Previous studies have shown that circular RNAs (circRNAs) can affect NSCLC progression, but its regulatory mechanism is still indistinct. In this study, we unfold the roles of circular RNA_0007385 in NSCLC tissues and cells.

Conclusions

Circ_0007385 promoted NSCLC progression by sponging miR-493-3p to increase RAB22A expression, which also offered an underlying targeted therapy for NSCLC treatment.

Methods

Expression levels of circ_0007385, microRNA-493-3p (miR-493-3p) and Ras-related protein Rab-22A (RAB22A) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in NSCLC tissues and cells. Cell proliferation, apoptosis and stemness were examined by cell counting kit 8 (CCK8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry analysis and sphere-formation assay. The interaction between miR-493-3p and circ_0007385 or RAB22A was forecasted by bioinformatic analysis and detected by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and RNA pulldown assays. In vivo experiments were implemented to verify the effect of circ_0007385 in vivo.

Results

Expression of circ_0007385 and RAB22A increased, whereas miR-493-3p level was decreased in NSCLC tissues in contrast to that in normal tissues. For functional analysis, circ_0007385 deficiency inhibited cell proliferation and stemness, whereas it promoted cell apoptosis in NSCLC cells. Mechanically, circ_0007385 acted as a miR-493-3p sponge to modulate RAB22A expression. Moreover, circ_0007385 could regulate the development of NSCLC by sponging miR-493-3p to regulate the expression of RAB22A. In addition, circ_0007385 silence also attenuated tumor growth in vivo. Conclusions: Circ_0007385 promoted NSCLC progression by sponging miR-493-3p to increase RAB22A expression, which also offered an underlying targeted therapy for NSCLC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。