Curcumin modulates covalent histone modification and TIMP1 gene activation to protect against vascular injury in a hypertension rat model

姜黄素调节共价组蛋白修饰和 TIMP1 基因活化以保护高血压大鼠模型免受血管损伤

阅读:4
作者:Jun Hu, Tingting Shen, Jun Xie, Siyang Wang, Yue He, Fu Zhu

Abstract

Hypertension is a leading risk factor for morbidity and mortality. Previous studies have reported that curcumin has anti-oxidation and anti-aging effects and inhibits histone deacetylase activity. However, it is still unclear whether curcumin could protect against vascular injury induced by hypertension. Thus, the current study examined the therapeutic effects and mechanism of curcumin on vascular injury induced by hypertension in spontaneous hypertensive rats (SHRs). The present study revealed that curcumin may improve vascular structure and attenuate coronary artery pathology. Moderate doses (~50 mg) of curcumin were most effective in treating coronary artery injury in SHRs. Moreover, the results of immunohistochemical analysis indicated that the expression levels of histone deacetylase 1 (HDAC1), matrix metalloproteinase-2 (MMP-2) and transforming growth factor β (TGFβ) decreased in the curcumin treatment group, compared with the non-treated group or the negative control group. However, the expression of tissue inhibitor of metalloproteinase 1 (TIMP1) did not visibly decrease. Furthermore, chromatin immunoprecipitation results suggested that curcumin was capable of promoting the transcription activation of TIMP1 through suppressing HDAC1 expression and increasing histone H3 acetylation at the TIMP1 promoter region in SHRs. In conclusion, curcumin could relieve extracellular matrix degradation and interstitial fibrosis induced by hypertension, and lower blood pressure. It could also serve a function in improving vascular structure through inhibiting the expression of HDAC1, thereby promoting TIMP1 transcription activation and suppressing the expression of MMP-2 and TGFβ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。