Calycosin alleviates H2 O2 -induced astrocyte injury by restricting oxidative stress through the Akt/Nrf2/HO-1 signaling pathway

毛蕊异黄酮通过 Akt/Nrf2/HO-1 信号通路限制氧化应激,减轻 H2O2 诱导的星形胶质细胞损伤

阅读:7
作者:Cheng-You Lu, Cecilia Hsuan Day, Chia-Hua Kuo, Tso-Fu Wang, Tsung-Jung Ho, Pei-Fang Lai, Ray-Jade Chen, Chun-Hsu Yao, Vijaya Padma Viswanadha, Wei-Wen Kuo, Chih-Yang Huang

Abstract

Oxidative stress-induced brain cell damage is a crucial factor in the pathogenesis of reactive oxygen species (ROS)-associated neurological diseases. Further, studies show that astrocytes are an important immunocompetent cell in the brain and play a potentially significant role in various neurological diseases. Therefore, elimination of ROS overproduction might be a potential strategy for preventing and treating neurological diseases. Accumulating evidence indicates that calycosin, a main active ingredient in the Chinese herbal medicine Huangqi (Radix Astragali Mongolici), is a potential therapeutic candidate with anti-inflammation and/or anticancer effects. Here, we investigated the protective effect of calycosin in brain astrocytes by mimicking in vitro oxidative stress using H2 O2 . The results revealed that H2 O2 significantly induced ROS and inflammatory factor (tumor necrosis factor [TNF]-α and interleukin [IL]-1β) production, whereas post-treatment with calycosin dramatically and concentration-dependently suppressed H2 O2 -induced damage by enhancing cell viability, repressing ROS and inflammatory factor production, and increasing superoxide dismutase (SOD) expression. Additionally, we found that calycosin facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and promoted its nuclear translocation, thereby inducing the expression of antioxidant molecules (heme oxygenase [HO]-1 and SOD) following H2 O2 treatment. Moreover, calycosin did not attenuated H2 O2 -induced astrocyte damage and ROS production in the presence of the ML385 (a Nrf2-specific inhibitor) and following Nrf2 silencing. Furthermore, calycosin failed to increase Akt phosphorylation and mitigate H2 O2 -induced astrocyte damage in the presence of the LY294002 (a selective phosphatidylinositol 3-kinase inhibitor), indicating that calycosin-mediated regulation of oxidative-stress homeostasis involved Akt/Nrf2/HO-1 signaling. These findings demonstrated that calycosin protects against oxidative injury in brain astrocytes by regulating oxidative stress through the AKT/Nrf2/HO-1 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。