Cell-Specific Suppression of 4-Coumarate-CoA Ligase Gene Reveals Differential Effect of Lignin on Cell Physiological Function in Populus

4-香豆酸-辅酶 A 连接酶基因的细胞特异性抑制揭示木质素对杨树细胞生理功能的不同影响

阅读:5
作者:Shumin Cao, Cheng Huang, Laifu Luo, Shuai Zheng, Yu Zhong, Jiayan Sun, Jinshan Gui, Laigeng Li

Abstract

Lignin is a main component of the secondary cell wall in vessels and fibers of xylem tissue. However, the significance of lignin in cell physiology during plant growth is unclear. In this study, we generated lignin-modified Populus via cell-specific downregulation of the 4-coumarate-CoA ligase gene (4CL). The transgenic plants with selective lignin modification in vessel elements or fiber cells allowed us to investigate how lignin affects the physiology of vessel or fiber cells in relation to plant growth. Results showed that vessel-specific suppression of lignin biosynthesis resulted in deformed vessels and normal fibers, while fiber-specific suppression of lignin biosynthesis led to less-lignified fibers and normal vessels. Further analyses revealed that the efficiency of long distance water transport was severely affected in transgenics with vessel-specific lignin modification, while minimal effect was detected in transgenics with fiber-specific lignin modification. Vessel-specific lignin reduction led to high susceptibility to drought stress and poor growth in field, likely due to vessel defects in long distance transport of water. The distinct physiological significance of lignin in different cell types provides insights into the selective modification of lignin for improvement of lignocellulosic biomass utilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。