Background
The endothelium is the first line of defence against harmful microenvironment risks, and microRNAs (miRNAs) involved in vascular inflammation may be promising therapeutic targets to modulate atherosclerosis progression. In this study, we aimed to investigate the mechanism by which microRNA-216a (miR-216a) modulated inflammation activation of endothelial cells.
Conclusion
In summary, our findings suggest a new mechanism of vascular endothelial inflammation involving Smad7/IκBα signalling pathway in atherosclerosis.
Results
Luciferase assays showed that Smad7 was a direct target of miR-216a. Smad7 mRNA expression, negatively correlated with miR-216a during endothelial aging, was downregulated in senescent PDL44 cells, compared with young PDL8 HUVECs. MiR-216a markedly increased endothelial inflammation and adhesive capability to monocytes in PDL8 cells by promoting the phosphorylation and degradation of IκBα and then activating NF-κB signalling pathway. The effect of miR-216a on endothelial cells was consistent with that blocked Smad7 by siRNAs. When inhibiting endogenous miR-216a, the Smad7/IκBα expression was rescued, which led to decreased endothelial inflammation and monocytes recruitment. In human carotid atherosclerotic plaques, Smad7 level was remarkably decreased in high miR-216a group compared with low miR-216a group. Moreover, miR-216a was negatively correlated with Smad7 and IκBα levels and positively correlated with interleukin 1 beta (IL1β) expression in vivo.
