2,3,5,4'‑Tetrahydroxystilbene‑2‑O‑β‑D‑glucoside inhibits septic serum‑induced inflammatory injury via interfering with the ROS‑MAPK‑NF‑κB signaling pathway in pulmonary aortic endothelial cells

2,3,5,4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷通过干扰ROS-MAPK-NF-κB信号通路抑制脓毒症血清诱导的肺主动脉内皮细胞炎症损伤

阅读:8
作者:Wenqiang Li, Ruifang Sun, Sumei Zhou, Jinluan Ma, Yingguang Xie, Bingcan Xu, Huibao Long, Keqin Luo, Kuaifa Fang

Abstract

Sepsis is characterized by injury to the microvasculature and the microvascular endothelial cells, leading to barrier dysfunction. However, the specific role of injury in septic endothelial barrier dysfunction remains to be elucidated. In the present study, it was hypothesized that endothelial cell inflammatory injury is likely required for barrier dysfunction under septic conditions in vitro. 2,3,5,4'‑Tetrahydroxystilbene‑2‑O‑β‑D‑glucoside (TSG), a compound extracted from Chinese herbs, is able to inhibit the inflammatory injury of septic‑serum in endothelial cells. In the present study, cell viability was assayed by CCK‑8 method; mRNA and protein expression was identified by RT‑qPCR, western blot or Elisa, respectively and the production of reactive oxygen species was observed by a fluorescence microscope. The present study indicated that septic serum significantly decreased the cell viability of pulmonary aortic endothelial cells (PAECs) following co‑cultivation for 6 h, which occurred in a time‑dependent manner. TSG notably increased the viability of PAECs in a time‑ and concentration‑dependent manner. Further investigations revealed that septic serum increased the secretion of interleukin (IL)‑1β, IL‑6 and C‑reactive protein in PAECs, whereas pretreatment with TSG significantly decreased the secretion of these inflammatory factors. These data indicated that septic serum increased inflammatory injury to the PAECs, and TSG decreased this injury via the reactive oxygen species‑mitogen‑activated protein kinase‑nuclear factor‑κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。