BL-Hi-C reveals the 3D genome structure of Brassica crops with high sensitivity

BL-Hi-C 高灵敏度揭示芸苔属作物的三维基因组结构

阅读:8
作者:Lupeng Zhang, Ranze Zhao, Jianli Liang, Xu Cai, Lei Zhang, Huiling Guo, Zhicheng Zhang, Jian Wu, Xiaowu Wang

Abstract

High-throughput Chromatin Conformation Capture (Hi-C) technologies can be used to investigate the three-dimensional genomic structure of plants. However, the practical utility of these technologies is impeded by significant background noise, hindering their capability in detecting fine 3D genomic structures. In this study, we optimized the Bridge Linker Hi-C technology (BL-Hi-C) to comprehensively investigate the 3D chromatin landscape of Brassica rapa and Brassica oleracea. The Bouquet configuration of both B. rapa and B. oleracea was elucidated through the construction of a 3D genome simulation. The optimized BL-Hi-C exhibited lower background noise compared to conventional Hi-C methods. Taking this advantage, we used BL-Hi-C to identify FLC gene loops in Arabidopsis, B. rapa, and B. oleracea. We observed that gene loops of FLC2 exhibited conservation across Arabidopsis, B. rapa, and B. oleracea. While gene loops of syntenic FLCs exhibited conservation across B. rapa and B. oleracea, variations in gene loops were evident among multiple paralogs FLCs within the same species. Collectively, our findings highlight the high sensitivity of optimized BL-Hi-C as a powerful tool for investigating the fine 3D genomic organization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。