Neuregulin-1 improves right ventricular function and attenuates experimental pulmonary arterial hypertension

神经调节蛋白-1 改善右心室功能并减轻实验性肺动脉高压

阅读:7
作者:Pedro Mendes-Ferreira, Carolina Maia-Rocha, Rui Adão, Maria José Mendes, Diana Santos-Ribeiro, Bárbara Silvana Alves, Rui João Cerqueira, Paulo Castro-Chaves, André Pedro Lourenço, Gilles W De Keulenaer, Adelino Ferreira Leite-Moreira, Carmen Brás-Silva

Aims

Pulmonary arterial hypertension (PAH) is a serious disease that affects both the pulmonary vasculature and the right ventricle (RV). Current treatment options are insufficient. The cardiac neuregulin (NRG)-1/ErbB system is deregulated during heart failure, and treatment with recombinant human NRG-1 (rhNRG-1) has been shown to be beneficial in animal models and in patients with left ventricular (LV) dysfunction. This study aimed to evaluate the effects of rhNRG-1 in RV function and pulmonary vasculature in monocrotaline (MCT)-induced PAH and RV hypertrophy (RVH).

Conclusion

rhNRG-1 treatment attenuates pulmonary arterial and RV remodelling, and dysfunction in a rat model of MCT-induced PAH and has direct anti-remodelling effects on the pressure-overloaded RV.

Results

Male wistar rats (7- to 8-weeks old, n = 78) were injected with MCT (60 mg/kg, s.c.) or saline and treated with rhNRG-1 (40 µg/kg/day) or vehicle for 1 week, starting 2 weeks after MCT administration. Another set of animals was submitted to pulmonary artery banding (PAB) or sham surgery, and followed the same protocol. MCT administration resulted in the development of PAH, pulmonary arterial and RV remodelling, and dysfunction, and increased RV markers of cardiac damage. Treatment with rhNRG-1 attenuated RVH, improved RV function, and decreased RV expression of disease markers. Moreover, rhNRG-1 decreased pulmonary vascular remodelling and attenuated MCT-induced endothelial dysfunction. The anti-remodelling effects of rhNRG-1 were confirmed in the PAB model, where rhNRG-1 treatment was able to attenuate PAB-induced RVH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。