Conclusions
This study suggested that rhTyrRS (Y341A), a novel human tyrosyl-tRNA synthetase mutation, increased the platelet count under normal conditions. Further more, we confirmed that an NF-κB-mediated mechanism is involved in rhTyrRS (Y341A)-induced thrombopoiesis, which involves its interaction with VEGF-R II.
Purpose
Tumor chemotherapy and radiotherapy induces hematopoietic cell damage, resulting in thrombocytopenia. Conventional platelet transfusion strategies or drug therapies are used to treat thrombocytopenia. However, these therapies may result in a several side effects, including heightened susceptibility to infectious diseases and the formation of anti-TPO-antibodies. Therefore, a more secure strategy should be explored to overcome and compensate for the shortcomings of conventional strategies. Experimental approach: Effects of rhTyrRS(Y341A) on the expression of VCAM-1 on the surface of HUVECs were determined by analysing mRNA expression, promoter activity, protein expression. The molecular mechanisms of the effects of rhTyrRS(Y341A) on the expression of VCAM-1 on the surface of HUVECs were investigated by determining the activation of VEGF-R II/NF-κB pathway. Key
Results
Our results provide evidence that rhTyrRS (Y341A) activates NF-κB to upregulate VCAM-1 in a VEGF-R II/NF-κB pathway-dependent, resulting in megakaryocyte adhering to PVECs to induce platelet production. Conclusions: This study suggested that rhTyrRS (Y341A), a novel human tyrosyl-tRNA synthetase mutation, increased the platelet count under normal conditions. Further more, we confirmed that an NF-κB-mediated mechanism is involved in rhTyrRS (Y341A)-induced thrombopoiesis, which involves its interaction with VEGF-R II.
