KDM3A inhibition modulates macrophage polarization to aggravate post-MI injuries and accelerates adverse ventricular remodeling via an IRF4 signaling pathway

KDM3A 抑制可通过调节巨噬细胞极化来加重 MI 后损伤,并通过 IRF4 信号通路加速不良心室重塑

阅读:6
作者:Xiaopei Liu, Jing Chen, Bofang Zhang, Gen Liu, Hongyi Zhao, Qi Hu

Abstract

It has been reported that KDM3A participates in several cardiovascular diseases through epigenetic mechanisms. However, its biological role post myocardial infarction (MI) has not been explored. Excessive and prolonged inflammation period can aggravate post-MI injuries and accelerates left ventricular (LV) remodeling. Previous studies have shown that macrophages play a momentous role in post-MI injuries by regulating the balance between the inflammatory phase. In this study, we aimed to demonstrate whether KDM3A could regulate the polarization of macrophages to affect the inflammatory response after myocardial infarction and whether targeting KDM3A could influence the prognosis of myocardial infarction and adverse LV remodeling. To explore the biological function of KDM3A and the underlying mechanisms, the loss of function experiments were designed in vitro and vivo. we analyzed the function of macrophages by a phagocytosis and migration assay and explored the polarization of macrophages. The expression of macrophage inflammation-related genes in the acute inflammatory phase and surface markers was detected by western blot and immunofluorescence assays. Echocardiography, Masson's trichrome staining and hematoxylin and eosin (H&E) staining were used to detect cardiac ventricular function. Our data showed that KDM3A is essential for the biological function of rat bone marrow macrophages (BMDMs), and KDM3A deficiency decreases the capacity for phagocytosis and migration, promoting M1 but restraining M2 macrophage phenotype polarization in vitro. Furthermore, we constructed MI models of male rats to verify that KDM3A deficiency could regulate macrophage polarization to aggravate the inflammatory response and accelerate LV remodeling in vivo. Among them, we confirmed that IRF4 is a downstream effector of the KDM3A-dependent pathway which could epigenetically influence the transcription of IRF4 by enhancing histone H3 lysine 9 di-methylation(H3K9me2) accumulation on the IRF4 gene proximal promoter region to modulate macrophage polarization. These results demonstrated that KDM3A plays an essential role in the cardiac repair process of post-MI and LV remodeling by modulating the macrophage phenotype, thereby suggesting a promising therapy to treat post MI injuries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。