Conclusions
SCFAs treatment restored endothelial cells and mitochondrial function following Ang-II-induced oxidative stress. SCFAs exert these beneficial effects by acting on HO-2. Our results are opening the door for more studies to investigate the effect the of SCFAs/HO-2 axis on hypertension and obesity-induced cerebrovascular diseases.
Methods
Brain human microvascular endothelial cells were treated with Ang-II (500 nM for 24 h) in the presence and absence of an SCFAs cocktail (1 μM; acetate, propionate, and butyrate) and/or HO-2 inhibitor (SnPP 5 μM). At the end of the treatment, HO-2, endothelial markers (p-eNOS and NO production), inflammatory markers (TNFα, NFκB-p50, and -p65), calcium homeostasis, mitochondrial membrane potential, mitochondrial ROS and H2O2, and mitochondrial respiration were determined in all groups of treated cells. Key
Results
Our data showed that SCFAs rescued HO-2 after Ang-II treatment. Additionally, SCFAs rescued Ang-II-induced eNOS reduction and mitochondrial membrane potential impairment and mitochondrial respiration damage. On the other hand, SCFAs reduced Ang-II-induced inflammation, calcium dysregulation, mitochondrial ROS, and H2O2. All of the beneficial effects of SCFAs on endothelial cells and mitochondrial function occurred through HO-2. Conclusions: SCFAs treatment restored endothelial cells and mitochondrial function following Ang-II-induced oxidative stress. SCFAs exert these beneficial effects by acting on HO-2. Our results are opening the door for more studies to investigate the effect the of SCFAs/HO-2 axis on hypertension and obesity-induced cerebrovascular diseases.
