hsa-miR-212 modulates the radiosensitivity of glioma cells by targeting BRCA1

hsa-miR-212 通过靶向 BRCA1 调节胶质瘤细胞的放射敏感性

阅读:7
作者:Xin He, Saijun Fan

Abstract

Radioresistance remains a major challenge in the treatment of glioma, and the response of patients to radio-therapy varies considerably. MicroRNAs (miRNAs) are involved in various biological processes. The purpose of the present study was to investigate miRNAs involved in the response to radiation in glioma cell lines. Total RNA was isolated from human glioma U251 cells 30 min after γ-ray exposure and hybridized to an miRNA chip array. miRNA expression profiles were analyzed by quantitative real-time PCR. pcDNA3/EGFP-miR-212 mimic transfection was used to verify the function of miR-212 in colony formation tests, and the effect of miR-212 overexpression on U251 cells was examined by western blot analysis of apoptosis-related proteins (Bcl-2, Bax, caspase-3 and cytochrome c). The target genes of miR-212 were predicted using bioinformatic tools including miRNA databases, and breast cancer susceptibility gene 1 (BRCA1) was selected for further confirmation by EGFP fluorescence reporter and loss- and gain-of-function assays. Of the 16 candidate miRNAs showing altered expression, five were assessed by real-time PCR; miR-212 was identified as contributing to the radioresistance of glioma cells and was shown to attenuate radiation-induced apoptosis. miR-212 negatively regulated BRCA1 expression by interacting with its 3'-untranslated region, suggesting a correlation between BRCA1 expression and radiosensitivity in glioma cells. U-118MG and SHG-44 cell lines were used to confirm these observations. The response of glioma cells to radiation involves the miR-212-mediated modulation of BRCA1 gene expression, suggesting that the miR-212/BRCA1 axis may play a potential role in the radiotherapy of gliomas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。