Liposomes with cyclic RGD peptide motif triggers acute immune response in mice

含有环状 RGD 肽基序的脂质体在小鼠中引发急性免疫反应

阅读:7
作者:Xiaoyi Wang, Huan Wang, Kuan Jiang, Yanyu Zhang, Changyou Zhan, Man Ying, Mingfei Zhang, Linwei Lu, Ruifeng Wang, Songli Wang, Diane J Burgess, Hao Wang, Weiyue Lu

Abstract

Liposomes with peptides motifs have been widely applied for targeted delivery of anticancer drugs. However, few studies have questioned whether peptide modification on liposomes may induce serious toxicity associated with immune stimulation. Here, we report that display of a tumor targeting cyclic RGD peptide (e.g. c(RGDyK) and c(RGDfK) on the surface of liposomes can be a potent inducer of lethal hypersensitivity-like reactions in mice upon re-administration, with the main symptom a sudden drop in body temperature. The hypothermia usually abates within 4 h but is sometimes lethal with death happening within 30 min post injection. This reaction has been proven to be IgE-independent acute systemic anaphylaxis, which may due to IgG immune complex triggered complement activation, anaphylatoxin and cytokine release, etc., leading to acute conspicuous organ damage. Results from an exploration of influence factors showed that the immunotoxicity of c(RGDyK)-liposomes could not be eliminated by minimizing the c(RGDyK) motif ratio, or by decreasing injection doses in the normal dose range, or by increasing the mPEG-DSPE motif ratio. However, encapsulation of a strong cytotoxic drug completely shut off this unwanted immune response. Investigation with a series of peptides containing the RGD sequence suggested that the lethal immunotoxicity of the cyclic RGD peptide was RGD sequence and peptide cyclization dependent. This study provides a valuable alert for the utilization of peptide modified liposomes in drug delivery, especially when carrying low-toxicity drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。