Cystathionine-β-synthase (CBS)/H2S system promotes lymph node metastasis of esophageal squamous cell carcinoma (ESCC) by activating SIRT1

胱硫醚-β-合酶 (CBS)/H2S 系统通过激活 SIRT1 促进食管鳞状细胞癌 (ESCC) 淋巴结转移

阅读:9
作者:Ya Liu, Limin Pan, Yuxi Li, Yuying Deng, Xue Han, Han Fu, Tianxiao Wang

Abstract

Lymph node metastasis is a key factor of death and prognosis in patients with esophageal squamous cell carcinoma (ESCC). Previous studies have demonstrated that Cystathionine-β-synthase (CBS)/H2S system plays important roles in progression of various cancer. However, the function and mechanism of CBS/H2S system in lymph node metastasis of ESCC remains unclear. Here, we found that CBS was highly expressed in human ESCC tissues and closely associated with lymph node metastasis in ESCC patients. Functional studies demonstrated that CBS could significantly promote lymph node metastasis of ESCC tumor cells. In vitro, CBS knockdown inhibited tumor cell proliferation, migration and invasion, whereas CBS overexpression produced the opposite results. In vivo, downregulation of CBS distinctly inhibited ESCC tumor growth and lymphatic metastasis, as evidenced by the decreased size and weight of tumor and popliteal lymph node. Meanwhile, we also found high expression of CBS-induced ESCC angiogenesis and lymphangiogenesis in vitro and in vivo by upregulating VEGF, VEGF-C, and VEGF-D. Mechanistically, CBS up-regulated the expression of SIRT1 and thus interrupted the Notch1/Hes1 axis, which plays a crucial role in lymph node metastasis of ESCC. Moreover, it was demonstrated that H2S derived from CBS-activated SIRT1 via increasing the NAD+/NADH ratio and promoting the phosphorylation of SIRT1. In addition, H2S derived from CBS also enhanced SIRT1 protein stability. Taken together, these data show that the high expression of CBS/H2S system promotes ESCC lymph node metastasis via activating SIRT1 signaling pathway and CBS could serve as a potential therapeutic target for clinical intervention in ESCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。