The Alternative TrkAIII Splice Variant, a Targetable Oncogenic Participant in Human Cutaneous Malignant Melanoma

替代 TrkAIII 剪接变体,人类皮肤恶性黑色素瘤中的可靶向致癌参与者

阅读:4
作者:Lucia Cappabianca, Veronica Zelli, Cristina Pellegrini, Michela Sebastiano, Rita Maccarone, Marco Clementi, Alessandro Chiominto, Pierdomenico Ruggeri, Ludovica Cardelli, Marianna Ruggieri, Maddalena Sbaffone, Maria-Concetta Fargnoli, Stefano Guadagni, Antonietta R Farina, Andrew R Mackay

Abstract

Post-therapeutic relapse, poor survival rates and increasing incidence justify the search for novel therapeutic targets and strategies in cutaneous malignant melanoma (CMM). Within this context, a potential oncogenic role for TrkA in CMM is suggested by reports of NTRK1 amplification, enhanced TrkA expression and intracellular TrkA activation associated with poor prognosis. TrkA, however, exhibits tumour-suppressing properties in melanoma cell lines and has recently been reported not to be associated with CMM progression. To better understand these contradictions, we present the first analysis of potential oncogenic alternative TrkA mRNA splicing, associated with TrkA immunoreactivity, in CMMs, and compare the behaviour of fully spliced TrkA and the alternative TrkAIII splice variant in BRAF(V600E)-mutated A375 melanoma cells. Alternative TrkA splicing in CMMs was associated with unfolded protein response (UPR) activation. Of the several alternative TrkA mRNA splice variants detected, TrkAIII was the only variant with an open reading frame and, therefore, oncogenic potential. TrkAIII expression was more frequent in metastatic CMMs, predominated over fully spliced TrkA mRNA expression in ≈50% and was invariably linked to intracellular phosphorylated TrkA immunoreactivity. Phosphorylated TrkA species resembling TrkAIII were also detected in metastatic CMM extracts. In A375 cells, reductive stress induced UPR activation and promoted TrkAIII expression and, in transient transfectants, promoted TrkAIII and Akt phosphorylation, enhancing resistance to reductive stress-induced death, which was prevented by lestaurtinib and entrectinib. In contrast, fully spliced TrkA was dysfunctional in A375 cells. The data identify fully spliced TrkA dysfunction as a novel mechanism for reducing melanoma suppression, support a causal relationship between reductive stress, UPR activation, alternative TrkAIII splicing and TrkAIII activation and characterise a targetable oncogenic pro-survival role for TrkAIII in CMM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。