The RNA sequencing results revealed the expression of different genes and signaling pathways during chemotherapy resistance in peripheral T-cell lymphoma

RNA测序结果揭示外周T细胞淋巴瘤化疗耐药过程中不同基因和信号通路的表达

阅读:7
作者:Yunyi Lan #, Wei Tao #, Luyao Ma, Xiaoxiong Wang, Hongsheng Li, Yaxi Du, Ruijiao Yang, Shunxian Wu, Yingxin Ou, Xin Liu, Yunchao Huang, Yongchun Zhou

Background

Peripheral T-cell lymphoma (PTCL) is a subtype of non-Hodgkin's lymphoma that occurs primarily at extranodal sites and is commonly treated using chemotherapy and radiotherapy. PTCL is more malignant than other lymphoid tumors, resulting in a poor prognosis.The 5-year recurrence rate remains high, and there is a lack of standard treatment for patients with relapse-resistant disease. However, the molecular mechanisms underlying the resistance of peripheral T-cell lymphoma cells to chemotherapeutic drugs, as well as identifying strategies to overcome drug resistance remains unclear. In this study, we aimed to identify pivotal genes and signaling pathways associated with chemotherapy resistance in PTCL.

Conclusion

Our study revealed that the expression of specific genes, including TNFRSF1B, TRADD2, and MAP3K7, may play an important role in chemotherapy resistance in peripheral T-cell lymphoma. Moreover, we identified the downregulation of the TNF signaling pathway, a crucial pathway involved in cell survival, death, and differentiation, as a potential contributor to the development of chemotherapy resistance in peripheral T-cell lymphoma. These findings provide valuable insights into the molecular mechanisms underlying chemotherapy resistance and highlight potential targets for overcoming treatment resistance in this challenging disease.

Methods

In this study, a total of 5 healthy controls and 7 clinical patients were enrolled; 4 patients were classified as chemotherapy sensitive, and 3 patients were classified as chemotherapy resistant. Peripheral blood samples were collected from each participant, and total RNA was extracted from the white blood cells. RNA sequencing was conducted on the Illumina HiSeq platform to obtain comprehensive gene expression profiles. Subsequently, the expression patterns of the DEGs associated with the most enriched signaling pathways, with a special focus on cancer-related genes, were validated using quantitative real-time polymerase chain reaction (qRT-PCR) in peripheral TCL patients.

Results

RNA sequencing (RNA-seq) analysis revealed 4063 differentially expressed genes (DEGs) in peripheral T-cell lymphoma specimens from patients with chemotherapy resistance, of which 1128 were upregulated and 2935 were downregulated. Subsequent quantitative gene expression analysis confirmed a differential expression pattern in all the libraries, with 9 downregulated genes and 10 upregulated genes validated through quantitative real-time PCR in 6 clinical specimens from patients with chemotherapy resistance. KEGG pathway analysis revealed significant alterations in several pathways, with 6 downregulated pathways and 9 upregulated pathways enriched in the DEGs. Notably, the TNF signaling pathway, which is extensively regulated, was among the pathways that exhibited significant changes. These findings suggest that DEGs and the TNF signaling pathway may play crucial roles in chemotherapy resistance in peripheral T-cell lymphoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。