M1 macrophages impair tight junctions between endothelial cells after spinal cord injury

脊髓损伤后 M1 巨噬细胞损害内皮细胞之间的紧密连接

阅读:7
作者:Yang Luo, Fei Yao, Xuyang Hu, Yiteng Li, Yihao Chen, Ziyu Li, Zhenyu Zhu, Shuisheng Yu, Dasheng Tian, Li Cheng, Meige Zheng, Juehua Jing

Abstract

After spinal cord injury (SCI), endogenous angiogenesis occurs in the injury core, unexpectedly accompanied by continuous leakage of the blood-spinal cord barrier (BSCB), which may be caused by destruction of the tight junctions (TJs) between vascular endothelial cells-an important structure of the BSCB. Blood-derived macrophages infiltrate into the spinal cord, aggregate to the injury core and then polarize toward M1/M2 phenotypes after SCI. However, the effect of macrophages with different polarizations on the TJs between vascular endothelial cells remains unclear. Here, we demonstrated that from 7 days postinjury (dpi) to 28 dpi, accompanied by the aggregation of macrophages, the expression of claudin-5 (CLN-5) and zonula occludens-1 (ZO-1) in vascular endothelial cells in the injury core was significantly decreased in comparison to that in normal spinal cord tissue and in the penumbra. Moreover, the leakage of the BSCB was severe in the injury core, as demonstrated by FITC-dextran perfusion. Notably, our study demonstrated that depletion of macrophages facilitated the restoration of TJs between vascular endothelial cells and decreased the leakage of BSCB in the injury core after SCI. Furthermore, we confirmed that the endothelial TJs could be impaired by M1 macrophages through secreting IL-6 in vitro, leading to an increased permeability of endothelial cells, but it was not significantly affected by M0 and M2 macrophages. These results indicated that the TJs between vascular endothelial cells were impaired by M1 macrophages in the injury core, potentially resulting in continuous leakage of the BSCB after SCI. Preventing M1 polarization of macrophages or blocking IL-6 in the injury core may promote restoration of the BSCB, thus accelerating functional recovery after SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。