Hypothalamic control of interoceptive hunger

下丘脑控制内感受性饥饿

阅读:5
作者:Justin N Siemian, Miguel A Arenivar, Sarah Sarsfield, Yeka Aponte

Abstract

While energy balance is critical to survival, many factors influence food intake beyond caloric need or "hunger." Despite this, some neurons that drive feeding in mice are routinely referred to as "hunger neurons," whereas others are not. To understand how specific hypothalamic circuits control interoceptive hunger, we trained mice to discriminate fasted from sated periods. We then manipulated three hypothalamic neuronal populations with well-known effects on feeding while mice performed this task. While activation of ARCAGRP neurons in sated mice caused mice to report being food-restricted, LHVGAT neuron activation or LHVGLUT2 neuron inhibition did not. In contrast, LHVGAT neuron inhibition or LHVGLUT2 neuron activation in fasted mice attenuated natural hunger, whereas ARCAGRP neuron inhibition did not. Each neuronal population evoked distinct effects on food consumption and reward. After satiety- or sickness-induced devaluation, ARCAGRP neurons drove calorie-specific feeding, while LHVGAT neurons drove calorie-indiscriminate food intake. Our data support a role for ARCAGRP neurons in homeostatic feeding and implicate them in driving a hunger-like internal state that directs behavior toward caloric food sources. Moreover, manipulations of LH circuits did not evoke hunger-like effects in sated mice, suggesting that they may govern feeding more related to reward, compulsion, or generalized consumption than to energy balance, but also that these LH circuits can be powerful negative appetite modulators in fasted mice. This study highlights the complexity of hypothalamic feeding regulation and can be used as a framework to characterize how other neuronal circuits affect hunger and identify potential therapeutic targets for eating disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。