Mitochondrial hyperfusion promotes NF-κB activation via the mitochondrial E3 ligase MULAN

线粒体高灌注通过线粒体 E3 连接酶 MULAN 促进 NF-κB 活化

阅读:4
作者:Naima Zemirli, Marie Pourcelot, Gorbatchev Ambroise, Emeline Hatchi, Aimé Vazquez, Damien Arnoult

Abstract

Mitochondria are dynamic organelles with a morphology resulting from the balance between two opposing processes: fusion and fission. Little is known about the function of mitochondrial fusion, beside its role in the maintenance of mitochondrial DNA. We report here that enforced mitochondrial hyperfusion, due to the expression of a dominant-negative mutant of Drp1 or of MARCH5, promotes NF-κB activation in a TAK1- and IKK-dependent manner, through the mitochondrial E3 ubiquitin ligase MULAN. The capability of MULAN to activate NF-κB depends on its RING domain and on the E3 ubiquitin ligase TRAF2. Under physiological conditions, stress-induced mitochondrial hyperfusion (SIMH) is also accompanied by NF-κB activation, and the prevention of SIMH or the knockdown of MULAN impairs NF-κB activation. During SIMH, MULAN forms a complex with TRAF2 and modulates its ubiquitylation, signifying that TRAF2 may serve as an ubiquitylated transmitter of NF-κB signaling in this pathway. Our results suggest that mitochondria, through their dynamics, convert stress signals into a cell response leading to NF-κB activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。