Single cell analysis reveals inhibition of angiogenesis attenuates the progression of heterotopic ossification in Mkx-/- mice

单细胞分析表明,抑制血管生成可减缓 Mkx-/- 小鼠异位骨化的进展

阅读:6
作者:Junxin Lin, Yuwei Yang, Wenyan Zhou, Chao Dai, Xiao Chen, Yuanhao Xie, Shan Han, Huanhuan Liu, Yejun Hu, Chenqi Tang, Varitsara Bunpetch, Dandan Zhang, Yishan Chen, Xiaohui Zou, Di Chen, Wanlu Liu, Hongwei Ouyang

Abstract

Tendon heterotopic ossification (HO) is characterized by bone formation inside tendon tissue, which severely debilitates people in their daily life. Current therapies fail to promote functional tissue repair largely due to our limited understanding of HO pathogenesis. Here, we investigate the pathological mechanism and propose a potential treatment method for HO. Immunofluorescence assays showed that the Mohawk (MKX) expression level was decreased in human tendon HO tissue, coinciding with spontaneous HO and the upregulated expression of osteochondrogenic and angiogenic genes in the tendons of Mkx-/- mice. Single-cell RNA sequencing analyses of wild-type and Mkx-/- tendons identified three cell types and revealed the excessive activation of osteochondrogenic genes during the tenogenesis of Mkx-/- tendon cells. Single-cell analysis revealed that the gene expression program of angiogenesis, which is strongly associated with bone formation, was activated in all cell types during HO. Moreover, inhibition of angiogenesis by the small-molecule inhibitor BIBF1120 attenuated bone formation and angiogenesis in the Achilles tendons of both Mkx mutant mice and a rat traumatic model of HO. These findings provide new insights into the cellular mechanisms of tendon HO and highlight the inhibition of angiogenesis with BIBF1120 as a potential treatment strategy for HO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。