Oxidative Damage and Nuclear Factor Erythroid 2-Related Factor 2 Protein Expression in Normal Skin and Keloid Tissue

正常皮肤和瘢痕疙瘩组织中的氧化损伤和核因子红细胞2相关因子2蛋白的表达

阅读:8
作者:Yoon Jin Lee, Sun Bum Kwon, Chul Han Kim, Hyun Deuk Cho, Hae Seon Nam, Sang Han Lee, Mi Woo Lee, Doo Hyun Nam, Chang Yong Choi, Moon Kyun Cho

Background

Reactive oxygen species (ROS) play an important role in the induction of apoptosis under pathological conditions. Recently, a significant increase in ROS production and disrupted apoptosis mechanisms in keloids have been reported. Nuclear factor erythroid 2-related factor 2 (Nrf2) represents one of the most important cellular defense mechanisms against oxidative stress and is implicated in the regulation of apoptosis. Recently, it has been reported that Nrf2 upregulates Bcl-2, an anti-apoptotic protein.

Conclusion

Collectively, our data indicate that Nrf2 expression is downregulated in keloid tissues, and that Nrf2 is involved in the development of apoptosis in Nrf2 siRNA-transfected fibroblasts. We propose that a defective antioxidant system and apoptotic dysregulation may participate in keloid pathogenesis.

Methods

ROS generation in keloid tissues was evaluated with OxyBlot analysis. Western blotting and/or immunohistochemical staining approaches were used to study expression of Nrf2 or Bcl-2 in keloid and normal skin tissues. Cellular fractionation was performed to examine subcellular distribution of Nrf2. Transfection of fibroblasts with Nrf2-specific small interfering RNA (siRNA) was conducted to understand the relationship between Nrf2 expression and apoptosis induction.

Objective

To compare Nrf2 protein expression in normal skin tissues to keloid tissues.

Results

Protein oxidation, a marker of oxidative stress, is increased in keloid tissues. Western blot analysis clearly showed that Nrf2 and Bcl-2 are downregulated in keloid tissues. Immunohistochemical staining of Nrf2 confirmed the results of the western blot analysis. Transfection of fibroblasts with the Nrf2-specific siRNA results in increased apoptosis and decreased cell viability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。