5-HT3A receptors maintain hippocampal LTP in a CB1 and GABAA receptor- dependent manner for spatial memory

5-HT3A 受体以 CB1 和 GABAA 受体依赖的方式维持海马 LTP,以实现空间记忆

阅读:6
作者:Yan Yu, Jing-Jing Li, Xiao-Qian He, Zi-Ying Lai, Rui Hao, Yu Qi, Dong-Qing Cao, Ming Fu, Hong Ma, Qiu-Chen Xie, Mu Sun, Zhi-Li Huang, Ling-Jing Jin, Hui-Hui Sun, Ning Lu, Rui Wang, Wing-Ho Yung, Ying Huang

Background and purpose

As the only ionotropic receptor in the 5-HT receptor family, the 5-HT3 receptor (5-HT3 R) is involved in psychiatric disorders and its modulators have potential therapeutic effects for cognitive impairment in these disorders. However, it remains unclear how 5-HT3 Rs shape synaptic plasticity for memory function. Experimental approach: Extracellular as well as whole-cell electrophysiological recordings were used to monitor hippocampal LTP and synaptic transmission in hippocampal slices in 5-HT3 AR knockout or 5-HT3 AR-GFP mice. Immunocytochemistry, qRT-PCR and western blotting were used to measure receptor expression. We also assessed hippocampal dependent cognition and memory, using the Morris water maze (MWM) and novel object recognition. Key

Purpose

As the only ionotropic receptor in the 5-HT receptor family, the 5-HT3 receptor (5-HT3 R) is involved in psychiatric disorders and its modulators have potential therapeutic effects for cognitive impairment in these disorders. However, it remains unclear how 5-HT3 Rs shape synaptic plasticity for memory function. Experimental approach: Extracellular as well as whole-cell electrophysiological recordings were used to monitor hippocampal LTP and synaptic transmission in hippocampal slices in 5-HT3 AR knockout or 5-HT3 AR-GFP mice. Immunocytochemistry, qRT-PCR and western blotting were used to measure receptor expression. We also assessed hippocampal dependent cognition and memory, using the Morris water maze (MWM) and novel object recognition. Key

Results

We found that 5-HT3 R dysfunction impaired hippocampal LTP in Schaffer collateral (SC)-CA1 pathway in hippocampal slices, by facilitating GABAergic inputs in pyramidal cells. This effect was dependent on 5-HT3 Rs on axon terminals. It resulted from reduced expression and function of the cannabinoid receptor 1 (CB1 R) co-localized with 5-HT3 Rs on axon terminals, and then led to diminishment of tonic inhibition of GABA release by CB1 Rs. Inhibition of CB1 Rs mimicked the facilitation of GABAergic transmission by 5-HT3 R disruption. Consequently, mice with hippocampal 5-HT3 R disruption exhibited impaired spatial memory in MWM tasks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。