Caveolin-1 regulates osteoclast differentiation by suppressing cFms degradation

Caveolin-1 通过抑制 cFms 降解来调节破骨细胞分化

阅读:7
作者:Yong Deok Lee, Soo-Hyun Yoon, Eunhee Ji, Hong-Hee Kim

Abstract

Caveolae are flask-shaped cell-surface membranes, which consist of cholesterol, sphingolipids and caveolin proteins. In a microarray analysis, we found that caveolin-1 (Cav-1) was upregulated by receptor activator of NFκB ligand (RANKL), the osteoclast differentiation factor. Silencing of Cav-1 inhibited osteoclastogenesis and also decreased the activation of mitogen-activated protein kinase and the induction of NFATc1 by RANKL. Cav-1 knockdown suppressed the expression of cFms and RANK, two major receptors for osteoclastogenesis. Interestingly, cFms expression was decreased only at the protein level, not at the messenger RNA (mRNA) level, whereas RANK expression was decreased at both the mRNA and protein levels. Furthermore, Cav-1 deficiency increased the lysosomal degradation of cFms. Taken together, these results demonstrate that Cav-1-dependent cFms stabilization contributes to efficient osteoclastogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。