Conclusions
The levels of biomechanical proteins keratin 2 and keratin 10 are significantly lower in moderate and high myopic corneas than in low myopic corneas.
Methods
A total of 27 myopic corneas were used for the Tandem Mass Tag (TMT) proteomics analysis. Differentially expressed proteins (DEPs) were clustered with fold changes > 1.20 or < 0.83 and p < 0.05. Proteins and Proteins Interactions (PPIs) were conducted to find hub proteins; Uniprot database was to screen proteins with biomechanical functions, and Parallel Reaction Monitoring (PRM) was performed to verify the TMT
Purpose
To explore the biomechanical proteins different between low myopic corneas and moderate to high myopic corneas.
Results
In total, 34 DEPs were observed between moderate myopic corneas and low myopic corneas; 103 DEPs were observed between high myopic corneas and low myopic corneas, 20 proteins overlapped. The PPIs analysis showed keratin 2, keratins 10 and PRSS1 were hub proteins. The Uniprot function analysis suggested keratin 2 and keratin 10 exhibited biomechanical functions. The PRM demonstrated keratin 2 and keratin 10 levels were significantly lower in moderate and high myopic corneas, which was consistent with the TMT proteomics results. IF staining also demonstrated keratin 2 and keratin 10 were less distributed in moderate and high myopic corneas than in low myopic corneas. Conclusions: The levels of biomechanical proteins keratin 2 and keratin 10 are significantly lower in moderate and high myopic corneas than in low myopic corneas.
