[68Ga]Ga-NODAGA-E[(cRGDyK)]2 and [64Cu]Cu-DOTATATE PET Predict Improvement in Ischemic Cardiomyopathy

[68Ga]Ga-NODAGA-E[(cRGDyK)]2 和 [64Cu]Cu-DOTATATE PET 预测缺血性心肌病的改善

阅读:8
作者:Bjarke Follin, Cecilie Hoeeg, Ingrid Hunter, Simon Bentsen, Morten Juhl, Jacob Kildevang Jensen, Tina Binderup, Carsten Haagen Nielsen, Rasmus Sejersten Ripa, Jens Kastrup, Annette Ekblond, Andreas Kjaer

Abstract

An increasing number of patients are living with chronic ischemic cardiomyopathy (ICM) and/or heart failure. Treatment options and prognostic tools are lacking for many of these patients. Our aim was to investigate the prognostic value of imaging angiogenesis and macrophage activation via positron emission tomography (PET) in terms of functional improvement after cell therapy. Myocardial infarction was induced in rats. Animals were scanned with [18F]FDG PET and echocardiography after four weeks and randomized to allogeneic adipose tissue-derived stromal cells (ASCs, n = 18) or saline (n = 9). Angiogenesis and macrophage activation were assessed before and after treatment by [68Ga]Ga-RGD and [64Cu]Cu-DOTATATE. There was no overall effect of the treatment. Rats that improved left ventricular ejection fraction (LVEF) had higher uptake of both [68Ga]Ga-RGD and [64Cu]Cu-DOTATATE at follow-up (p = 0.006 and p = 0.008, respectively). The uptake of the two tracers correlated with each other (r = 0.683, p = 0.003 pre-treatment and r = 0.666, p = 0.004 post-treatment). SUVmax at follow-up could predict improvement in LVEF (p = 0.016 for [68Ga]Ga-RGD and p = 0.045 for [64Cu]Cu-DOTATATE). High uptake of [68Ga]Ga-RGD and [64Cu]Cu-DOTATATE PET after injection of ASCs or saline preceded improvement in LVEF. The use of these tracers could improve the monitoring of heart failure patients in treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。