TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis

TGF-β 解开巨噬细胞中的糖酵解和炎症并控制脓毒症期间的生存

阅读:7
作者:Thierry Gauthier, Chen Yao, Tyrone Dowdy, Wenwen Jin, Yun-Ji Lim, Liliana C Patiño, Na Liu, Shannon I Ohlemacher, Andrew Bynum, Rida Kazmi, Carole A Bewley, Mladen Mitrovic, Daniel Martin, Robert J Morell, Michael Eckhaus, Mioara Larion, Roxane Tussiwand, John J O'Shea, WanJun Chen

Abstract

Changes in metabolism of macrophages are required to sustain macrophage activation in response to different stimuli. We showed that the cytokine TGF-β (transforming growth factor-β) regulates glycolysis in macrophages independently of inflammatory cytokine production and affects survival in mouse models of sepsis. During macrophage activation, TGF-β increased the expression and activity of the glycolytic enzyme PFKL (phosphofructokinase-1 liver type) and promoted glycolysis but suppressed the production of proinflammatory cytokines. The increase in glycolysis was mediated by an mTOR-c-MYC-dependent pathway, whereas the inhibition of cytokine production was due to activation of the transcriptional coactivator SMAD3 and suppression of the activity of the proinflammatory transcription factors AP-1, NF-κB, and STAT1. In mice with LPS-induced endotoxemia and experimentally induced sepsis, the TGF-β-induced enhancement in macrophage glycolysis led to decreased survival, which was associated with increased blood coagulation. Analysis of septic patient cohorts revealed that the expression of PFKL, TGFBRI (which encodes a TGF-β receptor), and F13A1 (which encodes a coagulation factor) in myeloid cells positively correlated with COVID-19 disease. Thus, these results suggest that TGF-β is a critical regulator of macrophage metabolism and could be a therapeutic target in patients with sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。