Conclusions
Differences in tumour volumes were observed only in comparisons between mice fed a NCKD and mice fed a WD. • MCT1 inhibition did not have a significant effect on tumour volume, although it was associated with increased necrotic fraction.
Methods
120 nude athymic male mice (aged 6-8 weeks) were injected s.c. in the flank with 1.0 × 10(5) LAPC-4 prostate cancer cells. • Mice were randomized to one of four treatment groups: Western diet (WD, 35% fat, 16% protein, 49% carbohydrate) and vehicle (Veh) treatment; WD and mono-carboxylate transporter-1 (MCT1) inhibition via α-cyano-4-hydroxycinnamate (CHC) delivered through a mini osmotic pump; NCKD (84% fat, 16% protein, 0% carbohydrate) plus Veh; or NCKD and MCT1 inhibition. • Mice were fed and weighed three times per week and feed was adjusted to maintain similar body weights. • Tumour size was measured twice weekly and the combined effect of treatment was tested via Kruskal-Wallis analysis of all four groups. Independent effects of treatment (NCKD vs WD and CHC vs Veh) on tumour volume were tested using linear regression analysis. • All mice were killed on Day 53 (
Objective
To determine if a no-carbohydrate ketogenic diet (NCKD) and lactate transporter inhibition can exert a synergistic effect on delaying prostate tumour growth in a xenograft mouse model of human prostate cancer. Materials and
Results
There were no significant differences in tumour volumes among the four groups (P= 0.09). • When testing the independent effects of treatment, NCKD was significantly associated with lower tumour volumes at the end of the experiment (P= 0.026), while CHC administration was not (P= 0.981). However, CHC was associated with increased necrotic fraction (P < 0.001). Conclusions: Differences in tumour volumes were observed only in comparisons between mice fed a NCKD and mice fed a WD. • MCT1 inhibition did not have a significant effect on tumour volume, although it was associated with increased necrotic fraction.
