A thyroid hormone network exists in synovial fibroblasts of rheumatoid arthritis and osteoarthritis patients

类风湿关节炎和骨关节炎患者的滑膜成纤维细胞中存在甲状腺激素网络

阅读:6
作者:Anna-Sophia Pörings, Torsten Lowin, Bianca Dufner, Joachim Grifka, Rainer H Straub

Abstract

While patients with rheumatoid arthritis (RA) sometimes demonstrate thyroidal illness, the role of thyroid hormones in inflamed synovial tissue is unknown. This is relevant because thyroid hormones stimulate immunity, and local cells can regulate thyroid hormone levels by deiodinases (DIO). The study followed the hypothesis that elements of a thyroid hormone network exist in synovial tissue. In 12 patients with RA and 32 with osteoarthritis (OA), we used serum, synovial fluid, synovial tissue, and synovial fibroblasts (SF) in order to characterize the local thyroid hormone network using ELISAs, immunohistochemistry, imaging methods, tissue superfusion studies, cell-based ELISAs, flow cytometry, and whole genome expression profiling. Serum/synovial fluid thyroid hormone levels were similar in RA and OA (inclusion criteria: no thyroidal illness). The degradation product termed reverse triiodothyronine (reverse T3) was much lower in serum compared to synovial fluid indicating biodegradation of thyroid hormones in the synovial environment. Superfusion experiments with synovial tissue also demonstrated biodegradation, particularly in RA. Cellular membrane transporters of thyroid hormones, DIOs, and thyroid hormone receptors were present in tissue and SF. Density of cells positive for degrading DIOs were higher in RA than OA. TNF increased protein expression of degrading DIOs in RASF and OASF. Gene expression studies of RASF revealed insignificant gene regulation by bioactive T3. RA and OA synovial tissue/SF show a local thyroid hormone network. Thyroid hormones undergo strong biodegradation in synovium. While bioactive T3 does not influence SF gene expression, SF seem to have a relay function for thyroid hormones.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。